High-Dimensional PDEs, Tensor Networks, and Convex Optimization
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore innovative computational approaches for solving high-dimensional partial differential equations (PDEs) in this 53-minute lecture presented by Yuehaw Khoo from the University of Chicago at IPAM's Tensor Networks Workshop. Delve into the application of tensor networks and convex relaxations to construct inner and outer approximations of PDE solutions using low-order statistics. Discover how these techniques effectively combat the curse of dimensionality, offering new perspectives on tackling complex mathematical challenges in high-dimensional spaces.
Syllabus
Yuehaw Khoo - High-dimensional PDEs, tensor-network, and convex optimization - IPAM at UCLA
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Dimensionality Reduction in PythonDataCamp Sparse Nonlinear Dynamics Models with SINDy - The Library of Candidate Nonlinearities
Steve Brunton via YouTube Overcoming the Curse of Dimensionality and Mode Collapse - Ke Li
Institute for Advanced Study via YouTube Emergent Linguistic Structure in Deep Contextual Neural Word Representations - Chris Manning
Institute for Advanced Study via YouTube Multilevel Weighted Least Squares Polynomial Approximation – Sören Wolfers, KAUST
Alan Turing Institute via YouTube