An Introduction to Functional Analysis
Offered By: École Centrale Paris via Coursera
Course Description
Overview
Functional analysis is the branch of mathematics dealing with spaces of
functions. It is a valuable tool in theoretical mathematics as well as
engineering. It is at the very core of numerical simulation.
In this class, I will explain the concepts of convergence and talk about topology. You will understand the difference between strong convergence and weak convergence. You will also see how these two concepts can be used.
You will learn about different types of spaces including metric spaces, Banach Spaces, Hilbert Spaces and what property can be expected. You will see beautiful lemmas and theorems such as Riesz and Lax-Milgram and I will also describe Lp spaces, Sobolev spaces and provide a few details about PDEs, or Partial Differential Equations.
In this class, I will explain the concepts of convergence and talk about topology. You will understand the difference between strong convergence and weak convergence. You will also see how these two concepts can be used.
You will learn about different types of spaces including metric spaces, Banach Spaces, Hilbert Spaces and what property can be expected. You will see beautiful lemmas and theorems such as Riesz and Lax-Milgram and I will also describe Lp spaces, Sobolev spaces and provide a few details about PDEs, or Partial Differential Equations.
Syllabus
Week 1: Topology; continuity and convergence of a sequence in a topological space.
Week 2: Metric and normed spaces; completeness
Week 3: Banach spaces; linear continuous functions; weak topology
Week 4: Hilbert spaces; The Riesz representation theorem
Week 5: The Lax-Milgram Lemma
Week 6: Properties of the Lp spaces
Week 7: Distributions and Sobolev Spaces
Week 8: Application: simulating a membrane
Week 2: Metric and normed spaces; completeness
Week 3: Banach spaces; linear continuous functions; weak topology
Week 4: Hilbert spaces; The Riesz representation theorem
Week 5: The Lax-Milgram Lemma
Week 6: Properties of the Lp spaces
Week 7: Distributions and Sobolev Spaces
Week 8: Application: simulating a membrane
Taught by
John Cagnol
Related Courses
FUNCTIONAL ANALYSISIMSC via Swayam Quantum Theory
Friedrich–Alexander University Erlangen–Nürnberg via YouTube Functional Analysis
The Bright Side of Mathematics via YouTube The Mother of All Representer Theorems for Inverse Problems and Machine Learning - Michael Unser
Alan Turing Institute via YouTube Nonlinear Spectral Decompositions in Imaging and Inverse Problems
Society for Industrial and Applied Mathematics via YouTube