Unsupervised Learning
Offered By: Serrano.Academy via YouTube
Course Description
Overview
Dive into the world of unsupervised learning through a comprehensive 4.5-hour tutorial covering a wide range of advanced topics. Explore Gaussian Mixture Models, clustering techniques like K-means and Hierarchical clustering, and Principal Component Analysis (PCA). Discover the inner workings of recommendation systems using Matrix Factorization, and delve into Latent Dirichlet Allocation with a two-part explanation including Gibbs Sampling. Gain insights into Restricted Boltzmann Machines, learn about Singular Value Decomposition and its application in image compression, and understand Denoising and Variational Autoencoders. Conclude with a friendly introduction to Generative Adversarial Networks (GANs), equipping yourself with cutting-edge knowledge in unsupervised learning techniques.
Syllabus
Gaussian Mixture Models.
Clustering: K-means and Hierarchical.
Principal Component Analysis (PCA).
How does Netflix recommend movies? Matrix Factorization.
Latent Dirichlet Allocation (Part 1 of 2).
Training Latent Dirichlet Allocation: Gibbs Sampling (Part 2 of 2).
Restricted Boltzmann Machines (RBM) - A friendly introduction.
Singular Value Decomposition (SVD) and Image Compression.
Denoising and Variational Autoencoders.
A Friendly Introduction to Generative Adversarial Networks (GANs).
Taught by
Serrano.Academy
Related Courses
Graph Partitioning and ExpandersStanford University via NovoEd The Analytics Edge
Massachusetts Institute of Technology via edX More Data Mining with Weka
University of Waikato via Independent Mining Massive Datasets
Stanford University via edX The Caltech-JPL Summer School on Big Data Analytics
California Institute of Technology via Coursera