YoVDO

Introduction to Topic Modelling in R

Offered By: Coursera Project Network via Coursera

Tags

R Programming Courses Data Visualization Courses Machine Learning Courses Dimensionality Reduction Courses Topic Modeling Courses Latent Dirichlet Allocation Courses

Course Description

Overview

By the end of this project, you will know how to load and pre-process a data set of text documents by converting the data set into a document feature matrix and reducing it’s dimensionality. You will also know how to run an unsupervised machine learning LDA topic model (Latent Dirichlet Allocation). You will know how to plot the change in topics over time as well as explore the distribution of topic probability in each document.

Syllabus

  • Project Overview
    • By the end of this project, you will know how to load and pre-process a data set of text documents by converting the data set into a document feature matrix and reducing it’s dimensionality. You will also know how to run an unsupervised machine learning LDA topic model (Latent Dirichlet Allocation). You will know how to plot the change in topics over time as well as explore the distribution of topic probability in each document. This project is aimed at beginners who have a basic familiarity with the statistical programming language R and the RStudio environment, or people with a small amount of experience who would like to learn how to apply topic modelling on textual data.

Taught by

Nicole Baerg

Related Courses

Продвинутые методы машинного обучения
Higher School of Economics via Coursera
Natural Language Processing with Classification and Vector Spaces
DeepLearning.AI via Coursera
Machine Learning - Dimensionality Reduction
IBM via Cognitive Class
Machine Learning with Python
IBM via Cognitive Class
Predicting Extreme Climate Behavior with Machine Learning
University of Colorado Boulder via Coursera