YoVDO

Introduction to Text Analysis in R

Offered By: DataCamp

Tags

R Programming Courses Data Visualization Courses Sentiment Analysis Courses Data Wrangling Courses Text Analysis Courses ggplot2 Courses Topic Modeling Courses Latent Dirichlet Allocation Courses

Course Description

Overview

Analyze text data in R using the tidy framework.

From social media to product reviews, text is an increasingly important type of data across applications, including marketing analytics. In many instances, text is replacing other forms of unstructured data due to how inexpensive and current it is. However, to take advantage of everything that text has to offer, you need to know how to think about, clean, summarize, and model text. In this course, you will use the latest tidy tools to quickly and easily get started with text. You will learn how to wrangle and visualize text, perform sentiment analysis, and run and interpret topic models.

Syllabus

  • Wrangling Text
    • Since text is unstructured data, a certain amount of wrangling is required to get it into a form where you can analyze it. In this chapter, you will learn how to add structure to text by tokenizing, cleaning, and treating text as categorical data.
  • Visualizing Text
    • While counts are nice, visualizations are better. In this chapter, you will learn how to apply what you know from ggplot2 to tidy text data.
  • Sentiment Analysis
    • While word counts and visualizations suggest something about the content, we can do more. In this chapter, we move beyond word counts alone to analyze the sentiment or emotional valence of text.
  • Topic Modeling
    • In this final chapter, we move beyond word counts to uncover the underlying topics in a collection of documents. We will use a standard topic model known as latent Dirichlet allocation.

Taught by

Marc Dotson

Related Courses

Text Mining and Analytics
University of Illinois at Urbana-Champaign via Coursera
Introduction to Natural Language Processing
University of Michigan via Coursera
Enabling Technologies for Data Science and Analytics: The Internet of Things
Columbia University via edX
Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera
moocTLH: Nuevos retos en las tecnologĂ­as del lenguaje humano
Universidad de Alicante via MirĂ­adax