SL(2, Z)-Equivariant Machine Learning with Modular Forms - Theory and Applications
Offered By: Conference GSI via YouTube
Course Description
Overview
Explore the intersection of machine learning and modular forms theory in this 23-minute conference talk from GSI. Delve into the concept of SL(2, Z)-equivariant machine learning and its applications, gaining insights into how this mathematical approach can enhance AI models. Learn about the fundamental principles of modular forms and their relevance to equivariant neural networks. Discover potential use cases and practical implementations of this advanced technique in various fields of study and industry applications.
Syllabus
SL(2, Z)-Equivariant Machine Learning with Modular Forms Theory and Applications
Taught by
Conference GSI
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera Good Brain, Bad Brain: Basics
University of Birmingham via FutureLearn Statistical Learning with R
Stanford University via edX Machine Learning 1—Supervised Learning
Brown University via Udacity Fundamentals of Neuroscience, Part 2: Neurons and Networks
Harvard University via edX