Python RAG Tutorial - AI for PDFs with Local LLMs
Offered By: pixegami via YouTube
Course Description
Overview
Build a Retrieval Augmented Generation (RAG) application in Python to query and chat with PDF documents using generative AI. Explore advanced topics including local RAG implementation with Ollama, vector database updates, PDF integration, and AI response quality testing. Follow along with code examples and learn how to load PDF data, generate embeddings, store and update information, run RAG locally, and implement unit tests for AI output. Access the GitHub repository for the complete project and dive into additional resources on document loaders, PDF handling, and Ollama integration.
Syllabus
Introduction
RAG Recap
Loading PDF Data
Generate Embeddings
How To Store and Update Data
Updating Database
Running RAG Locally
Unit Testing AI Output
Wrapping Up
Taught by
pixegami
Related Courses
Pinecone Vercel Starter Template and RAG - Live Code Review Part 2Pinecone via YouTube Will LLMs Kill Search? The Future of Information Retrieval
Aleksa Gordić - The AI Epiphany via YouTube RAG But Better: Rerankers with Cohere AI - Improving Retrieval Pipelines
James Briggs via YouTube Advanced RAG - Contextual Compressors and Filters - Lecture 4
Sam Witteveen via YouTube LangChain Multi-Query Retriever for RAG - Advanced Technique for Broader Vector Space Search
James Briggs via YouTube