YoVDO

RAG But Better: Rerankers with Cohere AI - Improving Retrieval Pipelines

Offered By: James Briggs via YouTube

Tags

Machine Learning Courses Python Courses Information Retrieval Courses Retrieval Augmented Generation Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Learn about rerankers and their role in optimizing retrieval pipelines for improved accuracy in Retrieval Augmented Generation (RAG) systems. Explore the differences between embedding retrieval and reranking, and discover how to implement retrieval pipelines with reranking using Cohere AI's reranking model and OpenAI's text-embedding-ada-002 model with Pinecone Vector Database. Gain insights into the problems of retrieval-only approaches, understand how embedding models and rerankers work, and follow along with a Python implementation. Compare retrieval results with and without reranking, and learn valuable tips for effectively utilizing rerankers in your AI projects.

Syllabus

Code :
RAG and Rerankers
Problems of Retrieval Only
How Embedding Models Work
How Rerankers Work
Implementing Reranking in Python
Testing Retrieval without Reranking
Retrieval with Cohere Reranking
Tips for Reranking


Taught by

James Briggs

Related Courses

Semantic Web Technologies
openHPI
أساسيات استرجاع المعلومات
Rwaq (رواق)
《gacco特別企画》Evernoteで広がるgaccoの学びスタイル (ga038)
University of Tokyo via gacco
La Web Semántica: Herramientas para la publicación y extracción efectiva de información en la Web
Pontificia Universidad Católica de Chile via Coursera
快速学习
University of Science and Technology of China via Coursera