YoVDO

LangChain Multi-Query Retriever for RAG - Advanced Technique for Broader Vector Space Search

Offered By: James Briggs via YouTube

Tags

LangChain Courses Artificial Intelligence Courses Pinecone Courses Vector Databases Courses Information Retrieval Courses OpenAI Courses Retrieval Augmented Generation Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore an advanced Retrieval-Augmented Generation (RAG) technique called "Multi-Query" in LangChain through this 19-minute video tutorial. Learn how to broaden search scores by using an LLM to transform a single query into multiple queries, enabling a more comprehensive vector space search and diverse result set. Follow along as the instructor demonstrates the implementation using OpenAI's text-embedding-ada-002, gpt-3.5-turbo, Pinecone vector database, and the LangChain library. Discover the process of creating a LangChain MultiQueryRetriever, adding generation capabilities, utilizing Sequential Chain for RAG, customizing the Multi-Query approach, reducing hallucination, and integrating Multi-Query into a larger RAG pipeline. Gain practical insights into enhancing AI-powered information retrieval and generation systems.

Syllabus

LangChain Multi-Query
What is Multi-Query in RAG?
RAG Index Code
Creating a LangChain MultiQueryRetriever
Adding Generation to Multi-Query
RAG in LangChain using Sequential Chain
Customizing LangChain Multi Query
Reducing Multi Query Hallucination
Multi Query in a Larger RAG Pipeline


Taught by

James Briggs

Related Courses

Metadata Filtering for Vector Search - Latest Filter Tech
James Briggs via YouTube
Cohere vs. OpenAI Embeddings - Multilingual Search
James Briggs via YouTube
Building the Future with LLMs, LangChain, & Pinecone
Pinecone via YouTube
Supercharging Semantic Search with Pinecone and Cohere
Pinecone via YouTube
Preventing Déjà Vu - Vector Similarity Search for Security Alerts, with Expel and Pinecone
Pinecone via YouTube