Physics Informed Neural Networks (PINNs) - Introduction and Applications
Offered By: Steve Brunton via YouTube
Course Description
Overview
Explore the world of Physics Informed Neural Networks (PINNs) in this comprehensive 35-minute video lecture. Delve into the fundamental concept of PINNs, which involves modifying neural networks by incorporating partial differential equations (PDEs) into the loss function to promote solutions that align with known physical principles. Learn about the advantages and disadvantages of this approach, its applications in inference, and discover recommended resources for further study. Examine extensions of PINNs, including Fractional PINNs and Delta PINNs, and understand potential failure modes. Investigate the relationship between PINNs and Pareto fronts. This educational content, produced at the University of Washington with funding support from the Boeing Company, provides a comprehensive overview of PINNs and their applications in physics-informed machine learning.
Syllabus
Intro
PINNs: Central Concept
Advantages and Disadvantages
PINNs and Inference
Recommended Resources
Extending PINNs: Fractional PINNs
Extending PINNs: Delta PINNs
Failure Modes
PINNs & Pareto Fronts
Outro
Taught by
Steve Brunton
Related Courses
Inverse Methods in Heat TransferIndian Institute of Technology Madras via Swayam Laboratory for Interdisciplinary Breakthrough Science - Hybrid
International Centre for Theoretical Sciences via YouTube Improving the Variational Learning of Physics-Driven Neural Generative Models
Alan Turing Institute via YouTube HypoSVI- Earthquake Hypocentre Inversion With Stein Variational Inference and Physics Informed Neural Networks
Alan Turing Institute via YouTube Emulating InterStellar Medium Chemistry with Physics Informed Neural Networks
Alan Turing Institute via YouTube