YoVDO

Localized Model Order Reduction for Parameter Optimization with Multiscale PDE Constraints

Offered By: Hausdorff Center for Mathematics via YouTube

Tags

Partial Differential Equations Courses Numerical Analysis Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore localized model order reduction techniques for parameter optimization with multiscale PDE constraints in this 56-minute lecture by Mario Ohlberger from the Hausdorff Center for Mathematics. Delve into the reduced basis method for parameterized partial differential equations, examining its advantages in enabling high-fidelity real-time simulations and reducing computational costs in many-query applications. Investigate the challenges of large-scale and multiscale systems, focusing on localized training and on-the-fly enrichment strategies for PDE constrained optimization. Learn about the reduced basis - trust region framework, rigorous certification, and convergence concepts. Examine numerical experiments demonstrating the efficiency of proposed approaches in overcoming limitations of classical offline/online splitting methods.

Syllabus

Mario Ohlberger: Localized model order reduction for parameter optimization


Taught by

Hausdorff Center for Mathematics

Related Courses

Differential Equations in Action
Udacity
Dynamical Modeling Methods for Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera
An Introduction to Functional Analysis
École Centrale Paris via Coursera
Practical Numerical Methods with Python
George Washington University via Independent
The Finite Element Method for Problems in Physics
University of Michigan via Coursera