Localized Model Order Reduction for Parameter Optimization with Multiscale PDE Constraints
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore localized model order reduction techniques for parameter optimization with multiscale PDE constraints in this 56-minute lecture by Mario Ohlberger from the Hausdorff Center for Mathematics. Delve into the reduced basis method for parameterized partial differential equations, examining its advantages in enabling high-fidelity real-time simulations and reducing computational costs in many-query applications. Investigate the challenges of large-scale and multiscale systems, focusing on localized training and on-the-fly enrichment strategies for PDE constrained optimization. Learn about the reduced basis - trust region framework, rigorous certification, and convergence concepts. Examine numerical experiments demonstrating the efficiency of proposed approaches in overcoming limitations of classical offline/online splitting methods.
Syllabus
Mario Ohlberger: Localized model order reduction for parameter optimization
Taught by
Hausdorff Center for Mathematics
Related Courses
Differential Equations in ActionUdacity Dynamical Modeling Methods for Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera An Introduction to Functional Analysis
École Centrale Paris via Coursera Practical Numerical Methods with Python
George Washington University via Independent The Finite Element Method for Problems in Physics
University of Michigan via Coursera