Lies, Damned Lies, and Large Language Models - Measuring and Reducing Hallucinations
Offered By: EuroPython Conference via YouTube
Course Description
Overview
Explore the challenges and solutions surrounding large language models' (LLMs) tendency to produce incorrect information or "hallucinate" in this 29-minute conference talk from EuroPython 2024. Delve into the main causes of hallucinations in LLMs and learn how to measure specific types of misinformation using the TruthfulQA dataset. Discover practical techniques for assessing hallucination rates and comparing different models using Python tools like Hugging Face's `datasets` and `transformers` packages, as well as the `langchain` package. Gain insights into recent initiatives aimed at reducing hallucinations, with a focus on retrieval augmented generation (RAG) and its potential to enhance the reliability and usability of LLMs across various contexts.
Syllabus
Lies, damned lies and large language models — Jodie Burchell
Taught by
EuroPython Conference
Related Courses
Pinecone Vercel Starter Template and RAG - Live Code Review Part 2Pinecone via YouTube Will LLMs Kill Search? The Future of Information Retrieval
Aleksa Gordić - The AI Epiphany via YouTube RAG But Better: Rerankers with Cohere AI - Improving Retrieval Pipelines
James Briggs via YouTube Advanced RAG - Contextual Compressors and Filters - Lecture 4
Sam Witteveen via YouTube LangChain Multi-Query Retriever for RAG - Advanced Technique for Broader Vector Space Search
James Briggs via YouTube