Learning to Simulate the Universe with Deep Learning - Elena Giusarma
Offered By: Kavli Institute for Theoretical Physics via YouTube
Course Description
Overview
Explore the intersection of deep learning and cosmological simulations in this 24-minute conference talk by Elena Giusarma from Michigan Tech. Discover how machine learning techniques are revolutionizing our ability to simulate the universe, offering new insights into galaxy formation and evolution. Delve into the application of astrostatistics and data science tools in analyzing vast datasets from Integral Field Unit surveys, galaxy morphology studies, and multi-wavelength observations. Learn about the potential of machine learning-powered outlier detection algorithms in identifying anomalous galaxies and pushing the boundaries of our current understanding. Gain insights into how these advanced computational methods are bridging the gap between observational data and theoretical models, including cosmological hydrodynamical simulations and dark matter-only simulations. Understand the broader context of this research within the field of galaxy formation physics and its implications for future astronomical surveys like Rubin, DESI, Roman, Euclid, and the SKA.
Syllabus
Learning to Simulate the Universe with Deep Learning ▸ Elena Giusarma (Michigan Tech)
Taught by
Kavli Institute for Theoretical Physics
Related Courses
Data Science BasicsA Cloud Guru Introduction to Machine Learning
A Cloud Guru Address Business Issues with Data Science
CertNexus via Coursera Advanced Clinical Data Science
University of Colorado System via Coursera Advanced Data Science Capstone
IBM via Coursera