YoVDO

Galaxy Merger Reconstruction with Generative Graph Neural Networks - Yuan Sen Ting

Offered By: Kavli Institute for Theoretical Physics via YouTube

Tags

Astrostatistics Courses Data Science Courses Machine Learning Courses Outlier Detection Algorithms Courses

Course Description

Overview

Explore the cutting-edge application of generative graph neural networks in reconstructing galaxy mergers in this 29-minute conference talk by Yuan Sen Ting from the Australian National University. Delve into the intersection of astrostatistics, machine learning, and galaxy formation physics as part of the Kavli Institute for Theoretical Physics' conference on data-driven tools in galaxy evolution studies. Gain insights into how advanced computational methods are revolutionizing our understanding of galaxy formation and evolution, particularly in the context of large-scale surveys and multi-wavelength data. Discover how these innovative techniques can bridge the gap between observational data and theoretical models, potentially uncovering new paradigms in astrophysics. Learn about the broader implications of this research for upcoming astronomical missions and the future of galactic studies in the era of big data.

Syllabus

Galaxy Merger Reconstruction with Generative Graph Neural Networks ▸ Yuan Sen Ting (ANU)


Taught by

Kavli Institute for Theoretical Physics

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent