Finding Environmental Measures Sensitive to Halo Properties Using Neural Networks
Offered By: Kavli Institute for Theoretical Physics via YouTube
Course Description
Overview
Explore the application of neural networks in identifying environmental measures sensitive to halo properties in this 27-minute conference talk by Haley Bowden from Steward Observatory. Delve into the intersection of astrostatistics, machine learning, and galaxy formation as part of the Kavli Institute for Theoretical Physics' conference on data-driven tools in galaxy formation physics. Gain insights into how advanced data science techniques can enhance our understanding of galaxy evolution, linking observations with theoretical models such as cosmological hydrodynamical simulations. Discover the potential of these tools in analyzing vast datasets from current and future surveys, including Integral Field Unit data and multi-wavelength imaging. Learn about the conference's focus on translating data-driven results into physical understanding and its aim to maximize the benefits of astrostatistics and machine learning for the galaxy formation field.
Syllabus
Finding environmental measures sensitive to halo properties using... ▸ Haley Bowden (Steward Obs.)
Taught by
Kavli Institute for Theoretical Physics
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent