YoVDO

Interpretable Machine Learning - Data Brew Season 2 Episode 7

Offered By: Databricks via YouTube

Tags

Machine Learning Courses Neural Networks Courses Taxonomy Courses Data Privacy Courses Fairness in AI Courses Model Interpretability Courses

Course Description

Overview

Explore interpretable machine learning in this 37-minute Data Brew episode featuring Ameet Talwalkar. Dive into the concept of model interpretability, its relationship with data privacy and fairness, and cutting-edge research in the field. Learn about scale automation, safe model handling, problem definition, user studies, and practical applications. Discover insights on privacy, fairness, neural networks, and taxonomy in machine learning. Gain valuable advice from Ameet's expertise and experience in interpretable machine learning.

Syllabus

Intro
Meet Amit
Amits background
Scale automation
Working with models safely
Problem definition
User studies
Application
Privacy Fairness
Neural Networks
Taxonomy
Advice


Taught by

Databricks

Related Courses

Neural Networks for Machine Learning
University of Toronto via Coursera
Good Brain, Bad Brain: Basics
University of Birmingham via FutureLearn
Statistical Learning with R
Stanford University via edX
Machine Learning 1—Supervised Learning
Brown University via Udacity
Fundamentals of Neuroscience, Part 2: Neurons and Networks
Harvard University via edX