MIT Deep Learning in Life Sciences Spring 2020
Offered By: Massachusetts Institute of Technology via YouTube
Course Description
Overview
Syllabus
MIT Deep Learning Genomics - Lecture 3 - Convolutional Neural Networks CNNs (Spring 2020).
MIT Deep Learning Genomics - Lecture 4 - Recurrent Neural Networks (Spring 2020).
MIT Deep Learning Genomics - Lecture 1 - Machine Learning Intro (Spring 2020).
MIT Deep Learning Genomics - Lecture 2 - Neural Networks and Gradient Descent (Spring 2020).
MIT Deep Learning Genomics - Lecture 5 - Model Interpretability (Spring 2020).
MIT Deep Learning Genomics - Lecture 6 - Regulatory Genomics (Spring 2020).
MIT Deep Learning Genomics - Lecture 7 - Regulatory Logic (Spring 2020).
MIT Deep Learning Genomics - Lecture 8 - Characterizing Uncertainty Expt Planning (S20).
MIT Deep Learning Genomics - Lecture 10 - Epigenomics 3Dgenome (Spring20).
MIT Deep Learning Genomics - Lecture 11 - RNA, PCA, t-SNE, Embeddings (Spring20).
MIT Deep Learning Genomics - Lecture 14 - Deep Learning for Gene Expression Analysis (Spring20).
MIT Deep Learning Genomics - Lecture 15 - Single-cell genomics (Spring 2020).
MIT Deep Learning in Genomics - Lecture 16 - Genetics 1: GWAS, Linkage, Fine-Mapping.
MIT Deep Learning Genomics - Lecture 17 - Genetics2: Systems Genetics.
How to present - Writing, Figures, Talks (MIT Deep Learning Genomics Lecture 22).
Taught by
Manolis Kellis
Tags
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera Leading Ambitious Teaching and Learning
Microsoft via edX