YoVDO

Data-Driven Information Geometry Approach to Stochastic Model Reduction

Offered By: Inside Livermore Lab via YouTube

Tags

Probability Distributions Courses Wave Propagation Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 58-minute lecture on data-driven information geometry for stochastic model reduction. Delve into the extension of least squares techniques from flat spaces to curvilinear manifolds of probability distributions. Learn about the data-driven construction of statistical manifolds using local normal distributions derived from singular value decomposition. Discover how reduced-order models are obtained through geodesic transport on curved manifolds. Examine applications in adaptive computation of rapidly varying stochastic phenomena, including wave propagation in stochastic media and inhomogeneous biomechanical systems. Gain insights from Professor Sorin Mitran of the University of North Carolina, Chapel Hill, an expert in mathematics and computational science with extensive research experience and numerous publications.

Syllabus

DDPS | Data-driven information geometry approach to stochastic model reduction


Taught by

Inside Livermore Lab

Related Courses

Introduction to Acoustics (Part 2)
Korea Advanced Institute of Science and Technology via Coursera
Fundamentals of Gas Dynamics
Indian Institute of Technology Madras via Swayam
Redes de difracción en comunicaciones ópticas
Universitat Politècnica de València via edX
Millimeter Wave Technology
Indian Institute of Technology, Kharagpur via Swayam
Introducción a las radiocomunicaciones
Universitat Politècnica de València via edX