YoVDO

CAP5415 - Training Neural Networks Part 2 - Fall 2020 - Lecture 7

Offered By: University of Central Florida via YouTube

Tags

Neural Networks Courses Gradient Descent Courses Momentum Courses Backpropagation Courses Loss Functions Courses Stochastic Gradient Descent Courses Early Stopping Courses

Course Description

Overview

Dive into advanced concepts of training neural networks in this comprehensive lecture from the University of Central Florida's CAP5415 course. Explore key topics including network parameters, learning phases, loss functions, and gradient descent optimization techniques. Gain insights into backpropagation using the chain rule, and witness a practical UCF optimization demo. Examine challenges in gradient descent, such as oscillations, and learn strategies to overcome them, including momentum and learning rate adjustments. Investigate data fitting problems, early stopping techniques, and essential training steps. Conclude with an in-depth look at AlexNet training and the innovative architecture of Residual Networks.

Syllabus

Network Parameters - recap
Learning phases - recap Images
Loss Function - recap
Train CNN with Gradient Descent
Loss Functions
Differentiability
Backpropagation - Chain Rule
UCF Optimization demo
Stochastic Gradient Descent
Gradient descent oscillations
Momentum
Lowering the learning rate
Problem of fitting
Data fitting problem
Early stopping
Training steps
AlexNet - Training
Residual Networks


Taught by

UCF CRCV

Tags

Related Courses

Practical Predictive Analytics: Models and Methods
University of Washington via Coursera
Deep Learning Fundamentals with Keras
IBM via edX
Introduction to Machine Learning
Duke University via Coursera
Intro to Deep Learning with PyTorch
Facebook via Udacity
Introduction to Machine Learning for Coders!
fast.ai via Independent