MIT Introduction to Deep Learning
Offered By: Alexander Amini via YouTube
Course Description
Overview
Dive into the foundations of deep learning with this comprehensive lecture from MIT's Introduction to Deep Learning course. Explore key concepts including perceptrons, neural networks, activation functions, loss functions, gradient descent, backpropagation, and regularization techniques. Learn why deep learning is revolutionizing artificial intelligence and gain practical insights into applying neural networks. Follow along as the lecturer guides you through examples, explains training processes, and discusses important considerations like learning rates and batched gradient descent. By the end of this 49-minute session, acquire a solid understanding of the fundamental principles underlying modern deep learning approaches.
Syllabus
- Introduction
- Course information
- Why deep learning?
- The perceptron
- Activation functions
- Perceptron example
- From perceptrons to neural networks
- Applying neural networks
- Loss functions
- Training and gradient descent
- Backpropagation
- Setting the learning rate
- Batched gradient descent
- Regularization: dropout and early stopping
- Summary
Taught by
https://www.youtube.com/@AAmini/videos
Tags
Related Courses
Introduction to Deep LearningAlexander Amini via YouTube Introduction to Deep Learning
Alexander Amini via YouTube CAP5415 - Training Neural Networks Part 2 - Fall 2020 - Lecture 7
University of Central Florida via YouTube Early Stopping and Encoding a Feature Vector for Deep Neural Networks
Jeff Heaton via YouTube Statistical Learning Theory and Applications - Class 7
MITCBMM via YouTube