MIT Introduction to Deep Learning
Offered By: Alexander Amini via YouTube
Course Description
Overview
Dive into the foundations of deep learning with this comprehensive lecture from MIT's Introduction to Deep Learning course. Explore key concepts including perceptrons, neural networks, activation functions, loss functions, gradient descent, backpropagation, and regularization techniques. Learn why deep learning is revolutionizing artificial intelligence and gain practical insights into applying neural networks. Follow along as the lecturer guides you through examples, explains training processes, and discusses important considerations like learning rates and batched gradient descent. By the end of this 49-minute session, acquire a solid understanding of the fundamental principles underlying modern deep learning approaches.
Syllabus
- Introduction
- Course information
- Why deep learning?
- The perceptron
- Activation functions
- Perceptron example
- From perceptrons to neural networks
- Applying neural networks
- Loss functions
- Training and gradient descent
- Backpropagation
- Setting the learning rate
- Batched gradient descent
- Regularization: dropout and early stopping
- Summary
Taught by
https://www.youtube.com/@AAmini/videos
Tags
Related Courses
TensorFlow on Google CloudGoogle Cloud via Coursera Deep Learning Fundamentals with Keras
IBM via edX Intro to TensorFlow em Português Brasileiro
Google Cloud via Coursera TensorFlow on Google Cloud - Français
Google Cloud via Coursera Introduction to Neural Networks and PyTorch
IBM via Coursera