Early Stopping and Encoding a Feature Vector for Deep Neural Networks
Offered By: Jeff Heaton via YouTube
Course Description
Overview
Learn how to implement early stopping in Keras neural networks using training and validation splits. Explore techniques for encoding feature vectors and handling various data types, including numeric data and missing values. Discover preprocessing methods and understand the importance of train-test splits in deep learning. This video, part of a comprehensive deep learning course from Washington University in St. Louis, provides practical insights into improving neural network performance and preparing data for effective model training.
Syllabus
Introduction
Feature Vector
Data Sets
Numeric Data
Encoding Functions
Missing Median
Preprocessing
Training
Training Error
Validation Sets
Train Test Split
Taught by
Jeff Heaton
Related Courses
Genomic Data Science and Clustering (Bioinformatics V)University of California, San Diego via Coursera 用Python玩转数据 Data Processing Using Python
Nanjing University via Coursera Data Mining Project
University of Illinois at Urbana-Champaign via Coursera Advanced Business Analytics Capstone
University of Colorado Boulder via Coursera Data Mining: Theories and Algorithms for Tackling Big Data | 数据挖掘:理论与算法
Tsinghua University via edX