Advanced RAG with Llama 3 in LangChain - Building a PDF Chat System
Offered By: Venelin Valkov via YouTube
Course Description
Overview
Learn to build an advanced Retrieval-Augmented Generation (RAG) system using LangChain and Llama 3. Discover how to process complex PDF documents, create vector embeddings, and implement intelligent question-answering capabilities. Follow along as the video guides you through setting up Google Colab, parsing documents with LlamaParse, text splitting, creating vector embeddings with Qdrant, reranking with FlashRank, and building a Q&A chain using LangChain, Llama 3, and the Groq API. Gain hands-on experience in developing a chatbot that can effectively interact with PDF content using open-source models and tools. Perfect for developers and AI enthusiasts looking to enhance their skills in natural language processing and document analysis.
Syllabus
- Intro
- Text tutorial on MLExpert.io
- Our RAG Architecture
- Google Colab Setup
- Document Parsing with LlamaParse
- Text Splitting, Vector Embeddings & Vector DB Qdrant
- Reranking with FlashRank
- Q&A Chain with LangChain, Llama 3 and Groq API
- Chat with the PDF
- Conclusion
Taught by
Venelin Valkov
Related Courses
Prompt Templates for GPT-3.5 and Other LLMs - LangChainJames Briggs via YouTube Getting Started with GPT-3 vs. Open Source LLMs - LangChain
James Briggs via YouTube Chatbot Memory for Chat-GPT, Davinci + Other LLMs - LangChain
James Briggs via YouTube Chat in LangChain
James Briggs via YouTube LangChain Data Loaders, Tokenizers, Chunking, and Datasets - Data Prep
James Briggs via YouTube