Summarizing Data and Deducing Probabilities
Offered By: Pluralsight
Course Description
Overview
This course covers the most important aspects of exploratory data analysis using different univariate, bivariate, and multivariate statistics from Excel and Python, including the use of Naive Bayes' classifiers and Seaborn to visualize relationships.
Data science and data modeling are fast emerging as crucial capabilities that every enterprise and every technologist must possess these days. Increasingly, different organizations are using the same models and the same modeling tools, so what differs is how those models are applied to the data. So, it is really important that you know your data well. In this course, Summarizing Data and Deducing Probabilities, you will gain the ability to summarize your data using univariate, bivariate, and multivariate statistics in a range of technologies. First, you will learn how measures of mean and central tendency can be calculated in Microsoft Excel and Python. Next, you will discover how to use correlations and covariances to explore pairwise relationships. You will then see how those constructs can be generalized to multiple variables using covariance and correlation matrices. You will understand and apply Bayes' Theorem, one of the most powerful and widely-used results in probability, to build a robust classifier. Finally, you will use Seaborn, a visualization library, to represent statistics visually. When you are finished with this course, you will have the skills and knowledge to use univariate, bivariate, and multivariate descriptive statistics from Excel and Python in order to find relationships and calculate probabilities.
Data science and data modeling are fast emerging as crucial capabilities that every enterprise and every technologist must possess these days. Increasingly, different organizations are using the same models and the same modeling tools, so what differs is how those models are applied to the data. So, it is really important that you know your data well. In this course, Summarizing Data and Deducing Probabilities, you will gain the ability to summarize your data using univariate, bivariate, and multivariate statistics in a range of technologies. First, you will learn how measures of mean and central tendency can be calculated in Microsoft Excel and Python. Next, you will discover how to use correlations and covariances to explore pairwise relationships. You will then see how those constructs can be generalized to multiple variables using covariance and correlation matrices. You will understand and apply Bayes' Theorem, one of the most powerful and widely-used results in probability, to build a robust classifier. Finally, you will use Seaborn, a visualization library, to represent statistics visually. When you are finished with this course, you will have the skills and knowledge to use univariate, bivariate, and multivariate descriptive statistics from Excel and Python in order to find relationships and calculate probabilities.
Syllabus
- Course Overview 1min
- Understanding Descriptive Statistics for Data Analysis 25mins
- Performing Exploratory Data Analysis in Spreadsheets 41mins
- Summarizing Data and Deducing Probabilities Using Python 34mins
- Understanding and Applying Bayes' Rule 29mins
- Visualizing Probabilistic and Statistical Data Using Seaborn 37mins
Taught by
Janani Ravi
Related Courses
Basic StatisticsUniversity of Amsterdam via Coursera Basic Statistics in Python (Correlations and T-tests)
Coursera Project Network via Coursera Corporate Finance Essentials
IESE Business School via Coursera Correlation and Regression in R
DataCamp Introduction to Linear Modeling in Python
DataCamp