Probabilistic Systems Analysis and Applied Probability
Offered By: Massachusetts Institute of Technology via MIT OpenCourseWare
Course Description
Overview
Syllabus
1. Probability Models and Axioms.
2. Conditioning and Bayes' Rule.
3. Independence.
4. Counting.
5. Discrete Random Variables I.
6. Discrete Random Variables II.
7. Discrete Random Variables III.
8. Continuous Random Variables.
9. Multiple Continuous Random Variables.
10. Continuous Bayes' Rule; Derived Distributions.
11. Derived Distributions (ctd.); Covariance.
12. Iterated Expectations.
13. Bernoulli Process.
14. Poisson Process I.
15. Poisson Process II.
16. Markov Chains I.
17. Markov Chains II.
18. Markov Chains III.
19. Weak Law of Large Numbers.
20. Central Limit Theorem.
21. Bayesian Statistical Inference I.
22. Bayesian Statistical Inference II.
23. Classical Statistical Inference I.
24. Classical Inference II.
25. Classical Inference III.
Taught by
Prof. John Tsitsiklis
Tags
Related Courses
Introduction to Statistics: ProbabilityUniversity of California, Berkeley via edX Aléatoire : une introduction aux probabilités - Partie 1
École Polytechnique via Coursera Einführung in die Wahrscheinlichkeitstheorie
Johannes Gutenberg University Mainz via iversity Combinatorics and Probability
Moscow Institute of Physics and Technology via Coursera Probability
University of Pennsylvania via Coursera