RipsNet- Fast and Robust Estimation of Persistent Homology for Point Clouds
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Explore a data-driven approach to estimating persistence diagrams (PDs) of point clouds in this 54-minute conference talk. Delve into the practical limitations of persistent homology, including computational complexity and sensitivity to outliers. Discover RipsNet, a novel neural network architecture designed to efficiently estimate the vectorization of PDs for point clouds. Learn how RipsNet, once trained, can rapidly generate topological descriptors. Examine the proven robustness of RipsNet to input perturbations in terms of 1-Wasserstein distance, and understand how it outperforms exactly-computed PDs in noisy environments. Gain insights into overcoming challenges in topological data analysis and enhancing the practical application of persistent homology.
Syllabus
Yuichi Ike (6/29/22): RipsNet: fast and robust estimation of persistent homology for point clouds
Taught by
Applied Algebraic Topology Network
Related Courses
Automata TheoryStanford University via edX Introduction to Computational Thinking and Data Science
Massachusetts Institute of Technology via edX 算法设计与分析 Design and Analysis of Algorithms
Peking University via Coursera How to Win Coding Competitions: Secrets of Champions
ITMO University via edX Introdução à Ciência da Computação com Python Parte 2
Universidade de São Paulo via Coursera