Approximation of Compact Metric Spaces by Finite Samples
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Explore the reconstruction of topological properties in compact metric spaces through a comprehensive lecture on approximation techniques. Delve into inverse sequences of finite topological spaces and polyhedra derived from finite approximations. Discover the connections between this construction, Borsuk's Theory of Shapes, and Topological Persistence, a robust tool in Topological Data Analysis for extracting features from noisy datasets. Learn about the Hawaiian Earring, Cech homology, finite spaces, posets, and simplicial complexes. Examine the main construction of Polyhedral Approximative Sequences and investigate inverse persistence, infinite approximations, and the relationship between inverse limits and Shape theory.
Syllabus
Intro
Overview
Persistent homology
Persistence pipeline
What is Shape Theory?
The Hawaiian Earring
Importance of maps
Cech homology
Finite spaces and posets
Finite spaces and simplicial complexes
The Main Construction
Polyhedral Approximative Sequences
Inverse Persistence
Previous infinite approximations
Inverse limits and Shape
Taught by
Applied Algebraic Topology Network
Related Courses
Topological Data Analysis - New Perspectives on Machine Learning - by Jesse JohnsonOpen Data Science via YouTube Analyzing Point Processes Using Topological Data Analysis
Applied Algebraic Topology Network via YouTube MD Simulations and Machine Learning to Quantify Interfacial Hydrophobicity
Applied Algebraic Topology Network via YouTube Topological Data Analysis of Plant-Pollinator Resource Complexes - Melinda Kleczynski
Applied Algebraic Topology Network via YouTube Hubert Wagner - Topological Data Analysis in Non-Euclidean Spaces
Applied Algebraic Topology Network via YouTube