The David-Semmes Problem, Rectifiability, and Harmonic Measure - ICBS 2024
Offered By: BIMSA via YouTube
Course Description
Overview
Explore the solution to the David-Semmes problem in codimension one and its implications for harmonic measure in this 47-minute lecture. Delve into the intricacies of the n-dimensional Riesz transform and its connection to n-rectifiability. Learn about the groundbreaking work by Nazarov, Tolsa, and Volberg from 2014, and discover how their findings played a crucial role in solving one-phase and two-phase problems for harmonic measure proposed by Bishop in the early 1990s. Gain insights into the mathematical concepts of rectifiability, harmonic measure, and their interplay in solving complex geometric problems.
Syllabus
Xavier Tolsa: The David-Semmes problem, rectifiability, and harmonic measure #ICBS2024
Taught by
BIMSA
Related Courses
The Kakeya Needle Problem for Rectifiable SetsJoint Mathematics Meetings via YouTube Bala Krishnamoorthy: Linear Programming in Geometric Measure Theory
Applied Algebraic Topology Network via YouTube Weighted Fourier Extension Estimates and Applications
International Mathematical Union via YouTube Endpoint Fourier Restriction and Unrectifiability
Hausdorff Center for Mathematics via YouTube Harmonic Analysis Techniques for -Almost- Minimizers
Hausdorff Center for Mathematics via YouTube