YoVDO

Complete ML Lifecycle with MLflow - Learn Its Four Components

Offered By: MLOps World: Machine Learning in Production via YouTube

Tags

MLFlow Courses Databricks Courses MLOps Courses Model Deployment Courses Open Source Courses Experiment Tracking Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the complete machine learning lifecycle using MLflow in this comprehensive workshop session. Delve into the four key components of MLflow, an open-source platform designed to simplify and streamline the entire ML development process. Learn how to package reproducible projects, track results, and encapsulate models that integrate seamlessly with existing tools. Discover how MLflow addresses the unique challenges of ML development, including algorithm experimentation, parameter tuning, and result tracking for reproducibility. Gain insights from Jules Damji, Senior Developer Advocate at Databricks and MLflow contributor, as he shares his extensive experience in building large-scale distributed systems. Acquire practical knowledge to accelerate your organization's ML lifecycle, regardless of its size, and overcome the complexities associated with productionizing models across multiple systems.

Syllabus

Workshop Sessions: Complete ML Lifecycle with MLflow - Learn it's Four Components


Taught by

MLOps World: Machine Learning in Production

Related Courses

Machine Learning Operations (MLOps): Getting Started
Google Cloud via Coursera
Проектирование и реализация систем машинного обучения
Higher School of Economics via Coursera
Demystifying Machine Learning Operations (MLOps)
Pluralsight
Machine Learning Engineer with Microsoft Azure
Microsoft via Udacity
Machine Learning Engineering for Production (MLOps)
DeepLearning.AI via Coursera