VirTex- Learning Visual Representations from Textual Annotations
Offered By: Yannic Kilcher via YouTube
Course Description
Overview
Explore a detailed explanation of the VirTex paper, which introduces a novel approach to visual transfer learning using textual annotations. Dive into the methodology of pre-training convolutional neural networks from scratch using high-quality image captions, and discover how this technique compares to traditional supervised and unsupervised pre-training methods. Learn about the quality-quantity tradeoff in visual representation learning, the image captioning task, and the VirTex method's implementation. Examine the results of linear classification, ablation studies, fine-tuning experiments, and attention visualization. Gain insights into how this approach achieves comparable or superior performance to ImageNet-based pre-training while using significantly fewer images, potentially revolutionizing visual transfer learning for various computer vision tasks.
Syllabus
- Intro & Overview
- Pre-Training for Visual Tasks
- Quality-Quantity Tradeoff
- Image Captioning
- VirTex Method
- Linear Classification
- Ablations
- Fine-Tuning
- Attention Visualization
- Conclusion & Remarks
Taught by
Yannic Kilcher
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Computational Photography
Georgia Institute of Technology via Coursera Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera Introduction to Computer Vision
Georgia Institute of Technology via Udacity