YoVDO

Implement Image Captioning with Recurrent Neural Networks

Offered By: Pluralsight

Tags

Recurrent Neural Networks (RNN) Courses Machine Learning Courses Deep Learning Courses TensorFlow Courses Image Processing Courses Model Evaluation Courses Image Captioning Courses

Course Description

Overview

This course will teach you how to build and train image captioning models using TensorFlow, with the help of a case study - building a model for image tagging. You will learn how to prepare the data for model training and evaluate the trained model.

Manually interpreting billions of images is time-consuming and almost impossible. But if we teach machines to understand images, this task will become much more efficient. In this course, Implement Image Captioning with Recurrent Neural Networks, you’ll learn to build and train image captioning models with RNNs using TensorFlow. First, you’ll explore the broader understanding of recurrent neural networks along with an overview of image captioning and how CNNs can help us to understand images. Next, you’ll discover how to prepare image and text data. Then, you'll learn how to develop a deep learning model for image captioning, and different options to evaluate that model using TensorFlow. Finally, you’ll understand the implementation of the data science process. When you’re finished with this course, you’ll have the skills and knowledge of RNNs and CNNs needed to build image captioning models.

Taught by

Abdul Rehman Yousaf

Related Courses

AWS Certified Machine Learning - Specialty (LA)
A Cloud Guru
Google Cloud AI Services Deep Dive
A Cloud Guru
Introduction to Machine Learning
A Cloud Guru
Deep Learning and Python Programming for AI with Microsoft Azure
Cloudswyft via FutureLearn
Advanced Artificial Intelligence on Microsoft Azure: Deep Learning, Reinforcement Learning and Applied AI
Cloudswyft via FutureLearn