Detection of Objects in Cryo-Electron Micrographs Using Geometric Deep Learning
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Syllabus
Intro
Object detection, semantic segmentation, and instance segmentation
Single particle cryoEM, grossly oversimplified
In natural images, objects often have unknown orientations
Spatial decoders are image generative models that are equivariant to any coordinate transformation
Prior work: spatial-VAE combined the spatial decoder with an approximate inference network to learn disentangled object representations
Spatial-VAE fails to predict uniformly distributed rotations
Convolutional neural networks are translation equivariant but not rotation equivariant
Experiment setup and evaluation
TARGET-VAE learns invariant object representations, improving semantic clustering
Dimensionless Instance Segmentation Transformer (DIST)
3D instance segmentation of complex MT networks is challenging
Combining DIST with an upstream semantic segmentation network enables end-to-end tomogram analysis (TARDIS)
Using TARDIS for fully automated semantic and instance segmentation of microtubules in situ
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Google Cloud AI Services Deep DiveA Cloud Guru Advanced Computer Vision with TensorFlow
DeepLearning.AI via Coursera The AI Engineer Path
Scrimba Amazon SageMaker: Build an Object Detection Model Using Images Labeled with Ground Truth (Thai)
Amazon Web Services via AWS Skill Builder Amazon SageMaker: Build an Object Detection Model Using Images Labeled with Ground Truth (Vietnamese)
Amazon Web Services via AWS Skill Builder