YoVDO

Deep Learning – Part 2

Offered By: Indian Institute of Technology Madras via Swayam

Tags

Deep Learning Courses Markov Chains Courses Gibbs Sampling Courses Restricted Boltzmann Machine Courses Generative Modeling Courses Variational Autoencoders Courses Autoregressive Models Courses

Course Description

Overview

In this course, we will cover topics which lie at the intersection of Deep Learning and Generative Modeling. We will start with basics of joint distributions and build up to Directed and Undirected Graphical Models. We will then make a connection between Graphical Models and Deep Learning by having an in-depth discussion on Restricted Boltzmann Machines, Markov Chains and Gibbs Sampling for training RBMs. Finally, we will cover more recent Deep Generative models such as Variational Autoencoders, Generative Adversarial Networks and Autoregressive Models. 


Syllabus

Module 1  :  A brief introduction to Directed Graphical Models
Module 2  :   A brief introduction to Markov Networks, Using joint distributions for classification and sampling, Latent variables
Module 3  : Restricted Boltzmann Machines, Unsupervised Learning, Motivation for Sampling, Markov Chains, Gibbs Sampling for training RBMs, Contrastive Divergence for training RBMs
Module 4  :  Variational Autoencoders, Autoregressive models, GANs


Taught by

Prof. Mitesh M. Khapra

Tags

Related Courses

Probability - The Science of Uncertainty and Data
Massachusetts Institute of Technology via edX
Introduction to Probability, Statistics, and Random Processes
University of Massachusetts Amherst via Independent
Bioinformatique : algorithmes et génomes
Inria (French Institute for Research in Computer Science and Automation) via France Université Numerique
Algorithms for Big Data
Indian Institute of Technology Madras via Swayam
Quantitative Model Checking
EIT Digital via Coursera