Deep Learning – Part 2
Offered By: Indian Institute of Technology Madras via Swayam
Course Description
Overview
In this course, we will cover topics which lie at the intersection of Deep Learning and Generative Modeling. We will start with basics of joint distributions and build up to Directed and Undirected Graphical Models. We will then make a connection between Graphical Models and Deep Learning by having an in-depth discussion on Restricted Boltzmann Machines, Markov Chains and Gibbs Sampling for training RBMs. Finally, we will cover more recent Deep Generative models such as Variational Autoencoders, Generative Adversarial Networks and Autoregressive Models.
Syllabus
Module 1 : A brief introduction to Directed Graphical Models
Module 2 : A brief introduction to Markov Networks, Using joint distributions for classification and sampling, Latent variables
Module 3 : Restricted Boltzmann Machines, Unsupervised Learning, Motivation for Sampling, Markov Chains, Gibbs Sampling for training RBMs, Contrastive Divergence for training RBMs
Module 4 : Variational Autoencoders, Autoregressive models, GANs
Taught by
Prof. Mitesh M. Khapra
Tags
Related Courses
Image Compression and Generation using Variational Autoencoders in PythonCoursera Project Network via Coursera Probabilistic Deep Learning with TensorFlow 2
Imperial College London via Coursera Generative Models
Serrano.Academy via YouTube NVAE- A Deep Hierarchical Variational Autoencoder
Yannic Kilcher via YouTube Variational Autoencoder From Scratch in PyTorch
Aladdin Persson via YouTube