YoVDO

Autoformalization with Large Language Models - IPAM at UCLA

Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube

Tags

Formal Verification Courses Artificial Intelligence Courses Program Synthesis Courses

Course Description

Overview

Explore the cutting-edge field of autoformalization with large language models in this 55-minute conference talk by Tony Wu from Google. Delve into the process of automatically translating natural language mathematics into formal specifications and proofs, and discover how this technology could revolutionize formal verification, program synthesis, and artificial intelligence. Examine the intuition behind autoformalization, learn about model translation and two-shot training techniques, and analyze failure cases and takeaways. Investigate translational proofs, formal sketches, and benchmark results through practical examples, including an alarm proof. Gain valuable insights into the future prospects of autoformalization and its potential impact on advancing mathematical research and artificial intelligence capabilities.

Syllabus

Introduction
What is a parameter
Intuition
Autoformalization
Model Translation
TwoShot Training
Failure Case
Takeaways
Translational Proof
Formal Sketch
Results
Benchmark
Examples
Alarm Proof


Taught by

Institute for Pure & Applied Mathematics (IPAM)

Related Courses

Stanford Seminar - Concepts and Questions as Programs
Stanford University via YouTube
DreamCoder- Growing Generalizable, Interpretable Knowledge With Wake-Sleep Bayesian Program Learning
Yannic Kilcher via YouTube
A Neural Network Solves and Generates Mathematics Problems by Program Synthesis - Paper Explained
Aleksa Gordić - The AI Epiphany via YouTube
EI Seminar - Recent Papers in Embodied Intelligence
Massachusetts Institute of Technology via YouTube
Using Program Synthesis to Build Compilers
Simons Institute via YouTube