Thermalization in Quantum Chromodynamics - Ab Initio Approaches and Interdisciplinary Connections
Offered By: Kavli Institute for Theoretical Physics via YouTube
Course Description
Overview
Explore thermalization in quantum chromodynamics through this 34-minute conference talk from the 2021 Non-Equilibrium Universality in Many-Body Physics KITP Conference. Delve into ab initio approaches and interdisciplinary connections as Raju Venugopalan discusses universal phenomena, the effectiveness of hydrodynamics, and quantum fluctuations. Examine classical equations, momentum, and cold atom experiments while learning about thermalization in heavy iron collisions. Gain insights into the chiral magnetic effect and participate in a Q&A session to deepen your understanding of non-equilibrium many-body physics at the intersection of statistical physics, AMO, condensed matter, and high-energy physics.
Syllabus
Introduction
Motivation
Standard model
Universal phenomena
Unreasonable effectiveness of hydrodynamics
Ab initio approaches
Quantum fluctuations
Classical equations
Momentum
Cold atom experiments
Thermalization in heavy iron collisions
Summary
chiral magnetic effect
Questions
Taught by
Kavli Institute for Theoretical Physics
Related Courses
Atomic and Optical Physics: Atom-photon interactionsMassachusetts Institute of Technology via edX Atomic and Optical Physics Iā Part 3: Atom-Light Interactions 1 -- Matrix elements and quantized field
Massachusetts Institute of Technology via edX Atomic and Optical Physics I ā Part 5: Coherence
Massachusetts Institute of Technology via edX Atomic and Optical Physics: Optical Bloch Equations and Open System Dynamics
Massachusetts Institute of Technology via edX Atomic and Optical Physics: Quantum States and Dynamics of Photons
Massachusetts Institute of Technology via edX