Insights on Gradient-Based Algorithms in High-Dimensional Learning
Offered By: Simons Institute via YouTube
Course Description
Overview
Syllabus
Intro
WORKHORSE OF MACHINE LEARNIN
IN DEEP LEARNING
STRATEGY
WHY THIS MODEL?
ESTIMATORS
GRADIENT-BASED ALGORITHMS
DYNAMICAL MEAN FIELD THEORY
LANGEVIN STATE EVOLUTION (NUMERICAL SOLUTION)
LANGEVIN PHASE DIAGRAM
GRADIENT-FLOW PHASE DIAGRAM
POPULAR "EXPLANATION"
SPURIOUS MINIMA DO NOT NECESSARILY CAUSE GF TO FAIL
WHAT IS GOING ON?
TRANSITION RECIPE
TRANSITION CONJECTUR
LANDSCAPE ANALYSIS
CONCLUSION ON SPIKED MATRIX-TENSOR MODEL
TEACHER-NEURAL SETTING
TEACHER STUDENT PERCEPTRON
PHASE RETRIEVAL: OPTIMAL SOLUTION
GRADIENT DESCENT FOR PHASE RETRIEVAI
PERFORMANCE OF GRADIENT DESCENT
GRADIENT DESCENT NUMERICALLY
TOWARDS A THEORY
OVER-PARAMETRISED LANDSPACE
STOCHASTIC GRADIENT DESCENT
DYNAMICAL MEAN-FIELD THEOR Mignaco, Urbani, Krzakala, LZ, 2006.06098
DMFT FOLLOWS THE WHOLE TRAJECTORY
Taught by
Simons Institute
Related Courses
An Efficient and Accurate Approach to Strongly Correlated MaterialsMuST Program for Disordered Materials via YouTube Twisted Transition Metal Dicalcogenides - Tests of Quantum Embedding and Theories
Institute for Pure & Applied Mathematics (IPAM) via YouTube Basics of Dynamical Mean Field Theory
International Centre for Theoretical Sciences via YouTube Infinite Limits and Scaling Laws of Neural Networks
Institute for Pure & Applied Mathematics (IPAM) via YouTube CECAM-MARVEL Classics: Molecular and Materials Modelling with Antoine Georges and Gabriel Kotliar
Materials Cloud via YouTube