YoVDO

The Unreasonable Effectiveness of Mathematics in Large Scale Deep Learning - Lecture 2

Offered By: International Centre for Theoretical Sciences via YouTube

Tags

Mathematics Courses Artificial Intelligence Courses Deep Learning Courses Neural Networks Courses Theoretical Computer Science Courses Scaling Laws Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the profound impact of mathematics on large-scale deep learning in this lecture by Greg Yang, part of a discussion meeting on data science and probabilistic optimization methods. Delve into the intricate relationship between advanced mathematical concepts and the rapidly evolving field of deep learning. Gain insights into how mathematical principles contribute to the effectiveness and efficiency of large-scale neural networks. Examine the theoretical foundations that underpin modern machine learning algorithms and their practical applications. Discover how mathematical frameworks help explain the surprising success of deep learning models in various domains. Engage with cutting-edge research at the intersection of pure mathematics and artificial intelligence, presented by an expert in the field.

Syllabus

The unreasonable effectiveness of mathematics in large scale deep learning (Lecture 2) by Greg Yang


Taught by

International Centre for Theoretical Sciences

Related Courses

Introduction To Mechanical Micro Machining
Indian Institute of Technology, Kharagpur via Swayam
Biomaterials - Intro to Biomedical Engineering
Udemy
OpenAI Whisper - Robust Speech Recognition via Large-Scale Weak Supervision
Aleksa Gordić - The AI Epiphany via YouTube
Turbulence as Gibbs Statistics of Vortex Sheets - Alexander Migdal
Institute for Advanced Study via YouTube
City Analytics - Professor Peter Grindrod CBE
Alan Turing Institute via YouTube