YoVDO

The Narrated Transformer Language Model

Offered By: Jay Alammar via YouTube

Tags

Natural Language Processing (NLP) Courses Artificial Intelligence Courses Machine Learning Courses Embeddings Courses Model Training Courses Feedforward Neural Networks Courses Transformer Architecture Courses Self-Attention Mechanisms Courses

Course Description

Overview

Explore the Transformer architecture, the foundation of state-of-the-art AI/ML models like BERT and GPT, in this 30-minute visual presentation. Delve into the components of Transformer language models, including feed-forward neural networks and self-attention mechanisms. Learn about tokenization, embedding, and output projection processes. Gain insights into model training and probability visualization. Suitable for viewers with various levels of machine learning experience, this accessible video provides a comprehensive overview of the Transformer model's structure and applications in natural language processing.

Syllabus

Intro
The Architecture of the Transformer
Model Training
Transformer LM Component 1: FFNN
Transformer LM Component 2: Self-Attention
Tokenization: Words to Token Ids
Embedding: Breathe meaning into tokens
Projecting the Output: Turning Computation into Language
Final Note: Visualizing Probabilities


Taught by

Jay Alammar

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent