Symmetries in Machine Learning for Materials Science
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore the intersection of machine learning and materials science in this one-hour lecture by Ryan Adams from Princeton University. Delve into the importance of periodic structures in materials and meta-materials, focusing on crystalline solids and cellular-solid meta-materials. Learn about innovative techniques for incorporating crystallographic group invariance into machine learning models, both in linear and nonlinear representations. Discover how these symmetry-aware models can enhance the solution of the Schrödinger equation for crystalline solids, improve generative modeling of materials, and expand design spaces for cellular mechanical meta-materials. Gain insights into cutting-edge approaches that strengthen the bond between artificial intelligence and materials science, potentially leading to new material discoveries and advancements in the field.
Syllabus
Symmetries in Machine Learning for Materials Science
Taught by
Simons Institute
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent