Trustworthy Deep Learning
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore trustworthy deep learning in this 32-minute conference talk by Stanley Osher from the University of California, Los Angeles. Delve into four key aspects: robust, accurate, efficient, and private deep learning, supported by theoretical guarantees derived from differential equations. Learn about IntroResNet, FinemanResNets, Differential Privacy, and Deep Noiser as part of the Deep Learning and Medical Applications 2020 series presented at the Institute for Pure and Applied Mathematics, UCLA.
Syllabus
Intro
ResNet
Fineman
ResNets
Differential Privacy
Deep Noiser
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Statistical Machine LearningCarnegie Mellon University via Independent Secure and Private AI
Facebook via Udacity Data Privacy and Anonymization in R
DataCamp Build and operate machine learning solutions with Azure Machine Learning
Microsoft via Microsoft Learn Data Privacy and Anonymization in Python
DataCamp