Data Privacy and Anonymization in R
Offered By: DataCamp
Course Description
Overview
Publicly release data sets with a differential privacy guarantee.
With social media and big data everywhere, data privacy has been a growing, public concern. Recognizing this issue, entities such as Google, Apple, and the US Census Bureau are promoting better privacy techniques; specifically differential privacy, a mathematical condition that quantifies privacy risk. In this course, you will learn to code basic data privacy methods and a differentially private algorithm based on various differentially private properties. With these tools in hand, you will learn how to generate a basic synthetic (fake) data set with the differential privacy guarantee for public data release.
With social media and big data everywhere, data privacy has been a growing, public concern. Recognizing this issue, entities such as Google, Apple, and the US Census Bureau are promoting better privacy techniques; specifically differential privacy, a mathematical condition that quantifies privacy risk. In this course, you will learn to code basic data privacy methods and a differentially private algorithm based on various differentially private properties. With these tools in hand, you will learn how to generate a basic synthetic (fake) data set with the differential privacy guarantee for public data release.
Syllabus
Introduction to Data Privacy
-This chapter covers some basic data privacy techniques that statisticians use to anonymize data. You'll first learn how to remove identifiers and then generate synthetic data from probability distributions.
Introduction to Differential Privacy
-After covering the basic data privacy techniques, you'll learn conceptually about differential privacy as well as how to implement the most popular and common differentially private algorithm called the Laplace mechanism.
Differentially Private Properties
-In this chapter, you will learn the various properties of differential privacy, such as the combination rules and post-processing, to properly implement the Laplace mechanism for various kinds data questions.
Differentially Private Data Synthesis
-In this chapter, you will learn how to release simple data sets publicly using differentially private data synthesis techniques.
-This chapter covers some basic data privacy techniques that statisticians use to anonymize data. You'll first learn how to remove identifiers and then generate synthetic data from probability distributions.
Introduction to Differential Privacy
-After covering the basic data privacy techniques, you'll learn conceptually about differential privacy as well as how to implement the most popular and common differentially private algorithm called the Laplace mechanism.
Differentially Private Properties
-In this chapter, you will learn the various properties of differential privacy, such as the combination rules and post-processing, to properly implement the Laplace mechanism for various kinds data questions.
Differentially Private Data Synthesis
-In this chapter, you will learn how to release simple data sets publicly using differentially private data synthesis techniques.
Taught by
Claire Bowen
Related Courses
Introduction to Data Analytics for BusinessUniversity of Colorado Boulder via Coursera Digital and the Everyday: from codes to cloud
NPTEL via Swayam Systems and Application Security
(ISC)² via Coursera Protecting Health Data in the Modern Age: Getting to Grips with the GDPR
University of Groningen via FutureLearn Teaching Impacts of Technology: Data Collection, Use, and Privacy
University of California, San Diego via Coursera