Simple High-Level Code for Cryptographic Arithmetic - With Proofs, Without Compromises
Offered By: IEEE via YouTube
Course Description
Overview
Explore a groundbreaking approach to implementing cryptographic arithmetic in this 18-minute IEEE conference talk. Discover how to create short, high-level code with machine-checked proofs of functional correctness, and learn how simple partial evaluation can transform it into the fastest-known C code. Examine the development of an elliptic-curve library that achieves competitive performance across 80 prime fields and multiple CPU architectures. Gain insights into the first verified high-performance implementation of P-256, the most widely used elliptic curve. Follow the journey of how these implementations were integrated into BoringSSL, replacing existing specialized code for major deployments in Chrome, Android, and CloudFlare. Delve into topics such as compile-time representation, call-by-value evaluation, specialized versions, known weights, and the technical deliverables that made this innovation possible.
Syllabus
Introduction
The Problem
The Solution
Performance
Architecture
Compile Time Representation
Example Code
CallbyValue Evaluation
Specialized Version
Known Weights
Gathering the Weights
Steps
Coefficients
Assigning fixed integers
What took time
Technical deliverable
Conclusion
Taught by
IEEE Symposium on Security and Privacy
Tags
Related Courses
Software as a ServiceUniversity of California, Berkeley via Coursera Software Testing
University of Utah via Udacity The Hardware/Software Interface
University of Washington via Coursera Software Debugging
Saarland University via Udacity Introduction to Systematic Program Design - Part 1
The University of British Columbia via Coursera