A Taxation Perspective for Fair Re-ranking - SIGIR 2024
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore a novel approach to fair re-ranking in information retrieval systems through a taxation perspective. Delve into the research presented by authors Chen Xu, Xiaopeng Ye, Wenjie Wang, Liang Pang, Jun Xu, and Tat-Seng Chua in this 14-minute conference talk from the Association for Computing Machinery (ACM). Learn how the concept of taxation can be applied to address fairness issues in ranking algorithms, potentially improving equity in search results and recommendations. Gain insights into the methodology, findings, and implications of this innovative study, which aims to enhance the fairness of information retrieval systems while maintaining their effectiveness.
Syllabus
SIGIR 2024 T3.1 [fp] A Taxation Perspective for Fair Re-ranking
Taught by
Association for Computing Machinery (ACM)
Related Courses
Data Science EthicsUniversity of Michigan via edX Advanced Generative Art and Computational Creativity
Simon Fraser University via Kadenze AI for Legal Professionals (I): Law and Policy
National Chiao Tung University via FutureLearn Ethical Issues in Data Science
University of Colorado Boulder via Coursera Artificial Intelligence by CrashCourse
CrashCourse via YouTube