Topological Analysis of Convolutional Neural Network Layers for Image Analysis
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Explore the intersection of Topological Data Analysis and Convolutional Neural Networks in image analysis through this 29-minute lecture. Delve into the effectiveness of Persistent Homology in detecting subtle changes in image texture primitives caused by tampering or abnormalities. Examine various topologically sensitive texture features and investigate the impact of CNN layers on these features. Learn about traditional Machine Learning, texture-based image feature landmarks, and entropy of convolved ultrasound images. Analyze the effects of convolution layers on classification accuracy through a case study, gaining insights into the black box nature of CNN decision-making processes.
Syllabus
THE UNIVERSITY OF BUCKINGHAM
Traditional Machine Learning (ML) - Introduction
Texture based Image Feature Landmarks
Entropy of convolved Ultrasound images
Effects of Convolution Layers on Classification accuracy
Case study 1: Analysis of the results
Conclusion
Taught by
Applied Algebraic Topology Network
Related Courses
Topological Data Analysis - New Perspectives on Machine Learning - by Jesse JohnsonOpen Data Science via YouTube Analyzing Point Processes Using Topological Data Analysis
Applied Algebraic Topology Network via YouTube MD Simulations and Machine Learning to Quantify Interfacial Hydrophobicity
Applied Algebraic Topology Network via YouTube Topological Data Analysis of Plant-Pollinator Resource Complexes - Melinda Kleczynski
Applied Algebraic Topology Network via YouTube Hubert Wagner - Topological Data Analysis in Non-Euclidean Spaces
Applied Algebraic Topology Network via YouTube