GPU Accelerated Computation of VR Barcodes in Evaluating Deep Learning Models
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Syllabus
Intro
GPU Acceleration after the End of Moore
Challenges to achieve GPU acceleration
GPUs in Deep Learning
The Simplex-wise Flag Filtration
Persistent homology: Birth and Death for of the C. elegans Dataset
Design Goals for High Performance
Efficient Persistent Pair Hashmap
Filtration Construction with Clearing is jus Filtering and Sorting Problem
Why do we need Ripser++
What is a Generative Adversarial Network
Deep learning model evaluation: using topology
MTop-Divergence Properties
Computational aspect of MTopDiv
Experiments with MTopDiv
Detecting distribution shifts
Computational considerations
Conclusion
VR barcodes of attention graphs as feature • Pretrained or finetuned BERT model with pretrained Key, Query Weight matrices. For each head compute the matrix of pairwise self attention
Taught by
Applied Algebraic Topology Network
Related Courses
Introducción a la informática: codificación de la informaciónUniversitat Jaume I via Independent Introducción al desarrollo de videojuegos con Unity3D
Universitat Jaume I via Independent Numerical Analysis
Vidyasagar University via Swayam Computational Mathematics with SageMath
Institute of Chemical Technology (ICT) via Swayam Computational Commutative Algebra
NPTEL via YouTube