YoVDO

Ruling StarCraft Game Spitefully - Exploiting the Blind Spot of AI-Powered Game Bots

Offered By: Black Hat via YouTube

Tags

Black Hat Courses Artificial Intelligence Courses Machine Learning Courses Reinforcement Learning Courses Deep Reinforcement Learning Courses

Course Description

Overview

Explore the vulnerabilities of AI-powered game bots in this 40-minute Black Hat conference talk. Delve into the world of deep reinforcement learning (DRL) algorithms and their application in complex games like StarCraft. Learn about modeling and solving reinforcement learning problems, training DRL bots, and various attack methods including perturbation-based and adversarial agent attacks. Examine quantitative evaluations of winning rates, view demo examples, and discuss potential defense strategies against these exploits. Gain insights from experts Xinyu Xing, Wenbo Guo, Xian Wu, and Jimmy Su as they reveal the blind spots of AI in gaming and demonstrate how to exploit them.

Syllabus

Intro
DRL in Games
Modeling an RL Problem
Solving an RL Problem
DRL-powered Games
Training an DRL Bot
Perturbation-based Attacks
Adversarial Agent Attack
Our attack
Quantitively Evaluation • Comparison of winning rates.
Demo Examples
A Potential Defense


Taught by

Black Hat

Related Courses

Attack on Titan M, Reloaded - Vulnerability Research on a Modern Security Chip
Black Hat via YouTube
Attacks From a New Front Door in 4G & 5G Mobile Networks
Black Hat via YouTube
AAD Joined Machines - The New Lateral Movement
Black Hat via YouTube
Better Privacy Through Offense - How to Build a Privacy Red Team
Black Hat via YouTube
Whip the Whisperer - Simulating Side Channel Leakage
Black Hat via YouTube