Optimal Learning from Data
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore optimal learning from data in this 53-minute lecture by Ronald DeVore at the Hausdorff Center for Mathematics. Delve into the challenge of constructing approximations from functional observations of unknown functions. Examine quantitative theory, error measurement, and model class information. Discover methods for determining the smallest possible recovery error and constructing near-optimal discrete optimization problems. Investigate variants involving noisy data and explore joint research findings. Cover topics including the learning problem, mathematical questions, quantified performance, point evaluations, stochastic settings, deep learning, and bridging gaps in numerical approaches.
Syllabus
Intro
The Learning Problem
Mathematical Questions
Optimal Learning
The Numerical Challenge
Take aways from this Theorem
Quantified Performance
Point Evaluations
Similar Theory
Noisy Measurements
Solving the optimization problem
Data Sites: Do We Have Enough Data
The Stochastic Setting
Deep Learning (DL)
Other Numerical Objections
No Model Class or Penalty
Bridging the Gap
Summary
Taught by
Hausdorff Center for Mathematics
Related Courses
Social Network AnalysisUniversity of Michigan via Coursera Intro to Algorithms
Udacity Data Analysis
Johns Hopkins University via Coursera Computing for Data Analysis
Johns Hopkins University via Coursera Health in Numbers: Quantitative Methods in Clinical & Public Health Research
Harvard University via edX