YoVDO

Computing for Data Analysis

Offered By: Johns Hopkins University via Coursera

Tags

Data Analysis Courses Data Science Courses

Course Description

Overview

In this course you will learn how to program in R and how to use R for effective data analysis. You will learn how to install and configure software necessary for a statistical programming environment, discuss generic programming language concepts as they are implemented in a high-level statistical language. The course covers practical issues in statistical computing which includes programming in R, reading data into R, creating informative data graphics, accessing R packages, creating R packages with documentation, writing R functions, debugging, and organizing and commenting R code. Topics in statistical data analysis and optimization will provide working examples.

Syllabus

A student who has completed this course is able to:

  • Read formatted data into R
  • Subset, remove missing values from, and clean tabular data
  • Write custom functions in R to implement new functionality and making use of control structures such as loops and conditionals
  • Use the R code debugger to identify problems in R functions
  • Make a scatterplot/boxplot/histogram/image plot and modify a plot with custom annotations
  • Define a new data class in R and write methods for that class

Taught by

Roger D. Peng

Tags

Related Courses

Address Business Issues with Data Science
CertNexus via Coursera
Advanced Clinical Data Science
University of Colorado System via Coursera
Advanced Data Science Capstone
IBM via Coursera
Advanced Data Science with IBM
IBM via Coursera
Advanced Deep Learning Methods for Healthcare
University of Illinois at Urbana-Champaign via Coursera