YoVDO

Regularizing Trajectory Optimization with Denoising Autoencoders - Paper Explained

Offered By: Yannic Kilcher via YouTube

Tags

Reinforcement Learning Courses Gradient Descent Courses

Course Description

Overview

Explore a comprehensive analysis of the paper "Regularizing Trajectory Optimization with Denoising Autoencoders" in this informative video. Delve into the challenges of planning with learned world models in reinforcement learning and discover a novel solution that regularizes trajectory optimization using denoising autoencoders. Learn how this approach improves planning accuracy with both gradient-based and gradient-free optimizers, leading to rapid initial learning in popular motor control tasks. Gain insights into the paper's methodology, experiments, and implications for enhancing sample efficiency in model-based reinforcement learning.

Syllabus

Introduction
What is Reinforcement Learning
Exploiting Inaccurate Models
Proposed Approach
Regularization
Denoising Autoencoders
Optimal Denoising Function
Gradient Descent
Experiments


Taught by

Yannic Kilcher

Related Courses

Practical Predictive Analytics: Models and Methods
University of Washington via Coursera
Deep Learning Fundamentals with Keras
IBM via edX
Introduction to Machine Learning
Duke University via Coursera
Intro to Deep Learning with PyTorch
Facebook via Udacity
Introduction to Machine Learning for Coders!
fast.ai via Independent