Reinforcement Learning
Offered By: Indian Institute of Technology Madras via Swayam
Course Description
Overview
Reinforcement learning is a paradigm that aims to model the trial-and-error learning process that is needed in many problem situations where explicit instructive signals are not available. It has roots in operations research, behavioral psychology and AI. The goal of the course is to introduce the basic mathematical foundations of reinforcement learning, as well as highlight some of the recent directions of research.INTENDED AUDIENCE : Any interested learnerINDUSTRY SUPPORT :Data analytics/data science/robotics
Syllabus
Week 1 : IntroductionWeek 2 : Bandit algorithms – UCB, PACWeek 3: Bandit algorithms –Median Elimination, Policy GradientWeek 4: Full RL & MDPsWeek 5 : Bellman OptimalityWeek 6: Dynamic Programming & TD MethodsWeek 7 : Eligibility TracesWeek 8 : Function ApproximationWeek 9: Least Squares MethodsWeek 10: Fitted Q, DQN & Policy Gradient for Full RLWeek 11: Hierarchical RLWeek 12: POMDPs
Taught by
Balaraman Ravindran
Tags
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Artificial Intelligence for Robotics
Stanford University via Udacity Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent