Rapid Forecasting of Carbon Storage and Migration using Neural Operators and Transfer Learning
Offered By: Bureau of Economic Geology via YouTube
Course Description
Overview
Explore innovative techniques for predicting CO2 migration in storage reservoirs through this 51-minute lecture by Dr. Siddharth Misra, Associate Professor at Texas A&M University. Delve into the powerful combination of Fourier Neural Operator (FNO) networks and Transfer Learning, which significantly reduces computational time and data requirements for 3D CO2 plume migration predictions. Discover how this approach enables efficient and accurate analysis of CO2 saturation and pressure evolution in large reservoirs with diverse geological and engineering conditions. Examine the effectiveness of this technique through experiments on the 3D SACROC geomodel, showcasing a 75% reduction in training time and 50% decrease in data needs compared to conventional methods. Learn how this innovative approach can reduce traditional forecasting times from 40 minutes to just 1 minute, revolutionizing carbon storage and migration predictions in the field of geoscience and petroleum engineering.
Syllabus
Rapid Forecasting of Carbon Storage and Migration using Neural Operators and Transfer Learning
Taught by
Bureau of Economic Geology
Related Courses
Climate Literacy and Action for AllNottingham Trent University via FutureLearn Management of Marginal Lands and Carbon Sequestration estimation through Remote Sensing and GIS
Universitat Politècnica de València via edX Soil Carbon Sequestration: Increasing Carbon Stocks in Deep Soil - Part 6
AGU via YouTube Effects of CO2-Induced Reaction on Transport Properties of Debonded Well Cement-Casing Interfaces
AGU via YouTube Arctic Hydrology and the Role of Feedbacks in the Climate System - Nye Lecture
AGU via YouTube